Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Moisture pulse-reserve in the soil-plant continuum observed across biomes

Abstract

The degree to which individual pulses of available water drive plant activity across diverse biomes and climates is not well understood. It has previously only been investigated in a few dryland locations. Here, plant water uptake following pulses of surface soil moisture, an indicator for the pulse–reserve hypothesis, is investigated across South America, Africa and Australia with satellite-based estimates of surface soil and canopy water content. Our findings show that this behaviour is widespread: occurring over half of the vegetated landscapes. We estimate spatially varying soil moisture thresholds at which plant water uptake ceases, noting dependence on soil texture and proximity to the wilting point. The soil type and biome-dependent soil moisture threshold and the plant soil water uptake patterns at the scale of Earth system models allow a unique opportunity to test and improve model parameterization of vegetation function under water limitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plant–soil water relationship at an example location (9.1° N, 27.2° E; South Sudan).
Fig. 2: Biome-dependent plant–soil water relations during SM drydowns.
Fig. 3: Estimated soil moisture and matric potential thresholds below which plants lose water.
Fig. 4: Responsiveness of vegetation to pulses of available soil water.

Similar content being viewed by others

Data availability

SMAP L1C brightness temperature and ancillary datasets are freely available on National Snow and Ice Data Center (NSIDC) (https://nsidc.org/data/SPL1CTB_E/versions/1). IGBP land-cover classifications are freely available through NASA (https://modis.gsfc.nasa.gov/data/dataprod/mod12.php). MODIS tree-cover fraction is freely available through NASA (https://modis.gsfc.nasa.gov/data/dataprod/mod44.php). The GPM Version 5 IMERG precipitation product is freely available through NASA (https://pmm.nasa.gov/data-access/downloads/gpm). Responsiveness and soil moisture threshold metrics are available at https://github.com/afeld24/Plant-Soil-Water-Relations. MT-DCA SM and τ retrievals are available from the corresponding author upon request.

References

  1. Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89, 621–634 (2008).

    Article  Google Scholar 

  2. Reynolds, J. F., Kemp, P. R., Ogle, K. & Fernández, R. J. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141, 194–210 (2004).

    Article  Google Scholar 

  3. Ogle, K. & Reynolds, J. F. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141, 282–294 (2004).

    Article  Google Scholar 

  4. BassiriRad, A. H. et al. Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol. 145, 27–36 (1999).

    Article  Google Scholar 

  5. Montaña, C., Cavagnaro, B. & Briones, O. Soil water use by co-existing shrubs and grasses in the southern Chihuahuan Desert, Mexico. J. Arid Environ. 31, 1–13 (1995).

    Article  Google Scholar 

  6. Sala, O. E., Lauenroth, W. K. & Parton, W. J. Plant recovery following prolonged drought in a shortgrass steppe. Agric. Meteorol. 27, 49–58 (1982).

    Article  Google Scholar 

  7. Sala., O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).

    Article  CAS  Google Scholar 

  8. Noy-Meir, I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4, 25–52 (1973).

    Article  Google Scholar 

  9. Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).

    Article  Google Scholar 

  10. Chen, S., Lin, G., Huang, J. & Jenerette, D. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob. Change Biol. 15, 2450–2461 (2009).

    Article  Google Scholar 

  11. Huxman, T. E. et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141, 254–268 (2004).

    Article  Google Scholar 

  12. Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    Article  Google Scholar 

  13. Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    Article  Google Scholar 

  14. Asbjornsen, H. et al. Ecohydrological advances and applications in plant–water relations research: a review. J. Plant Ecol. 4, 3–22 (2011).

    Article  Google Scholar 

  15. Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

    Article  CAS  Google Scholar 

  16. Entekhabi, D. et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    Article  Google Scholar 

  17. Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).

    Article  Google Scholar 

  18. Tian, F. et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nat. Ecol. Evol. 2, 1428–1435 (2018).

    Article  Google Scholar 

  19. Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).

    Article  Google Scholar 

  20. Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).

    Article  Google Scholar 

  21. Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).

    Article  Google Scholar 

  22. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article  Google Scholar 

  23. Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).

    Article  Google Scholar 

  24. Fisher, J. B. et al. African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philos. T. R. Soc. B 368, 20120376–20120376 (2013).

    Article  Google Scholar 

  25. Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 508, 86–90 (2014).

    Article  Google Scholar 

  26. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  CAS  Google Scholar 

  27. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  CAS  Google Scholar 

  28. Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).

    Article  Google Scholar 

  29. McColl, K. A. et al. Global characterization of surface soil moisture drydowns. Geophys. Res. Lett. 44, 3682–3690 (2017).

    Article  Google Scholar 

  30. Golluscio, A. R. A., Sala, O. E. & Lauenroth, W. K. Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115, 17–25 (1998).

    Article  CAS  Google Scholar 

  31. Meinzer, F. C. et al. Converging pattern of hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol. 24, 919–928 (2004).

    Article  CAS  Google Scholar 

  32. Zhang, Q., Manzoni, S., Katul, G., Porporato, A. & Yang, D. The hysteretic evapotranspiration–vapor pressure deficit relation. J. Geophys. Res. Biogeosci. 119, 125–140 (2014).

    Article  Google Scholar 

  33. Feddes, R. A. et al. Modeling root water uptake in hydrological and climate models. Bull. Am. Meteorol. Soc. 82, 2797–2809 (2001).

    Article  Google Scholar 

  34. Becker, P. & Castillo, A. Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22, 242–249 (1990).

    Article  Google Scholar 

  35. Le Roux, X., Bariac, T. & Mariotti, A. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna. Oecologia 104, 147–155 (1995).

    Article  Google Scholar 

  36. Meinzer, F. C. et al. Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121, 293–301 (1999).

    Article  CAS  Google Scholar 

  37. Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    Article  CAS  Google Scholar 

  38. Schenk, J. H. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).

    Article  Google Scholar 

  39. Dara, A., Moradi, B. A., Vontobel, P. & Oswald, S. E. Mapping compensating root water uptake in heterogeneous soil conditions via neutron radiography. Plant Soil 397, 273–287 (2015).

    Article  CAS  Google Scholar 

  40. Laio, F., Porporato, A., Fernandez-Illescas, C. P. & Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress IV. Discussion of real cases. Adv. Water Resour. 24, 745–762 (2001).

    Article  Google Scholar 

  41. Emanuel, R. E., D’Odorico, P. & Epstein, H. E. A dynamic soil water threshold for vegetation water stress derived from stomatal conductance models. Water Resour. Res. 43, 1–13 (2007).

    Article  Google Scholar 

  42. Rodriguez-Iturbe, I., D’Odorico, P., Laio, F., Ridolfi, L. & Tamea, S. Challenges in humid land ecohydrology: interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resour. Res. 43, 1–5 (2007).

    Article  Google Scholar 

  43. Lin, Y. S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

    Article  CAS  Google Scholar 

  44. Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article  CAS  Google Scholar 

  45. Tai, X., Mackay, D. S., Anderegg, W. R. L., Sperry, J. S. & Brooks, P. D. Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA. New Phytol. 213, 113–127 (2017).

    Article  CAS  Google Scholar 

  46. Chaubell, J., Chan, S., Dunbar, R. S., Peng, J. & Yueh., S. SMAP Enhanced L1C Radiometer Half-Orbit 9 km EASE-Grid Brightness Temperatures, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016); https://doi.org/10.5067/2C9O9KT6JAWS

  47. Chaubell, J., Yueh, S., Entekhabi, D. & Peng, J. Resolution enhancement of SMAP radiometer data using the Backus Gilbert optimum interpolation technique in 2016 IEEE International Geoscience and Remote Sensing Symposium 284–287 (IEEE, 2016).

  48. Huffman, G. GPM Level 3 IMERG Final Run Half Hourly 0.1×0.1 Degree Precipitation, Version 05 (Goddard Space Flight Center Distributed Active Archive Center, 2015).

  49. Dimiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD44B.006

  50. Kim, S. Ancillary Data Report: Landcover Classification D-53057 (Jet Propulsion Laboratory California Institute of Technology, 2013).

  51. Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R. & Jackson, T. J. A model for microwave emission from vegetation-covered fields. J. Geophys. Res. 87, 11229 (1982).

    Article  Google Scholar 

  52. Konings, A. G. et al. Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sens. Environ. 172, 178–189 (2016).

    Article  Google Scholar 

  53. Konings, A. G., Piles, M., Das, N. & Entekhabi, D. L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sens. Environ. 198, 460–470 (2017).

    Article  Google Scholar 

  54. Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).

    Article  Google Scholar 

  55. O’Neill, P. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document (ATBD) SMAP Level 2 & 3 Soil Moisture (Passive) (Jet Propulsion Laboratory California Institute of Technology, 2012).

  56. Wigneron, J. P. et al. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 192, 238–262 (2017).

    Article  Google Scholar 

  57. O’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T. & Bindlish, R. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016); https://doi.org/10.5067/ZRO7EXJ8O3XI

  58. Dezfuli, A. K. et al. Validation of IMERG precipitation in Africa. J. Hydrometeorol. 18, 2817–2825 (2017).

    Article  Google Scholar 

  59. Tuttle, S. E. & Salvucci, G. D. Confounding factors in determining causal soil moisture-precipitation feedback. Water Resour. Res. 53, 5531–5544 (2017).

    Article  Google Scholar 

  60. Kurum, M. et al. A first-order radiative transfer model for microwave radiometry of forest canopies at L-band. IEEE. Trans. Geosci. Remote. Sens. 49, 3167–3179 (2011).

    Article  Google Scholar 

  61. Brooks, R. H. & Corey, A. T. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 92, 61–90 (1966).

    Google Scholar 

  62. Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978).

    Article  Google Scholar 

  63. Chan, S. K. et al. Assessment of the SMAP passive soil moisture product. IEEE. Trans. Geosci. Remote Sens. 54, 4994–5007 (2016).

    Article  Google Scholar 

  64. Liu, Y. Y., De Jeu, R. A. M., McCabe, M. F., Evans, J. P. & Van Dijk, A. I. J. M. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, 1–6 (2011).

    Google Scholar 

  65. Kerr, Y. et al. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Massachusetts Institute of Technology contributors were supported under contract with NASA. K.A.M. was funded by a Ziff Environmental Fellowship from Harvard University’s Center for the Environment. A.G.K. was supported by NASA Terrestrial Ecology award no. 80NSSC18K0715 through the New Investigator programme.

Author information

Authors and Affiliations

Authors

Contributions

A.F.F. and D.E. conducted the analysis. A.F.F. wrote the manuscript. D.E. conceived and led the project. D.J.S.G., A.G.K., K.A.M., R.A. and G.D.S. contributed to interpretations of results as well as revisions to various versions of the analyses, figures and manuscripts.

Corresponding author

Correspondence to Andrew F. Feldman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, A.F., Short Gianotti, D.J., Konings, A.G. et al. Moisture pulse-reserve in the soil-plant continuum observed across biomes. Nature Plants 4, 1026–1033 (2018). https://doi.org/10.1038/s41477-018-0304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0304-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing