Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The global distribution and dynamics of surface soil moisture

Abstract

Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA’s Soil Moisture Active Passive mission to show that surface soil moisture—a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces—plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The stored precipitation fraction.
Figure 2: Global distribution and memory of surface soil moisture.
Figure 3: Global relations between stored precipitation fraction and soil moisture content and texture.

Similar content being viewed by others

References

  1. Oki, T., Entekhabi, D. & Harrold, T. I. in The State of the Planet: Frontiers and Challenges in Geophysics Vol. 19 (eds Stephan, R., Spark, J. & Hawkesworth, C. J.) 225–237 (Geophysical Monograph 150, American Geophysical Union, 2004).

    Book  Google Scholar 

  2. Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).

    Article  Google Scholar 

  3. D’Odorico, P., Laio, F., Porporato, A. & Rodriguez-Iturbe, I. Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Adv. Water Resour. 26, 59–70 (2003).

    Article  Google Scholar 

  4. Botter, G., Peratoner, F., Porporato, A., Rodriguez-Iturbe, I. & Rinaldo, A. Signatures of large-scale soil moisture dynamics on streamflow statistics across US climate regimes. Wat. Resour. Res. 43, W11413 (2007).

    Google Scholar 

  5. Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Change 12, 197–202 (2002).

    Article  Google Scholar 

  6. Fécan, F., Marticorena, B. & Bergametti, G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 17, 149–157 (1999).

    Article  Google Scholar 

  7. Bomblies, A. & Eltahir, E. A. B. Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth 6, 426–437 (2010).

    Article  Google Scholar 

  8. Hirschi, M., Mueller, B., Dorigo, W. & Seneviratne, S. I. Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability. Remote Sens. Environ. 154, 246–252 (2014).

    Article  Google Scholar 

  9. Qiu, J., Crow, W. T. & Nearing, G. S. The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation. J. Hydrometeorol. 19, 2419–2430 (2016).

    Article  Google Scholar 

  10. Entekhabi, D., Rodriguez-Iturbe, I. & Bras, R. L. Variability in large-scale water balance with land surface-atmosphere interaction. J. Clim. 5, 798–813 (1992).

    Article  Google Scholar 

  11. Entin, J. K. et al. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. 105, 11865–11877 (2000).

    Article  Google Scholar 

  12. Seneviratne, S. I. et al. Soil moisture memory in AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J. Hydrometeorol. 7, 1090–1112 (2006).

    Article  Google Scholar 

  13. Katul, G. G. et al. On the spectrum of soil moisture from hourly to interannual scales. Wat. Resour. Res. 43, W05428 (2007).

    Article  Google Scholar 

  14. Orth, R. & Seneviratne, S. I. Analysis of soil moisture memory from observations in Europe. J. Geophys. Res. 117, D15115 (2012).

    Article  Google Scholar 

  15. Koster, R. D. & Suarez, M. J. Soil moisture memory in climate models. J. Hydrometeorol. 2, 558–570 (2001).

    Article  Google Scholar 

  16. Koster, R. D. et al. On the nature of soil moisture in land surface models. J. Clim. 22, 4322–4335 (2009).

    Article  Google Scholar 

  17. Kerr, Y. H. et al. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010).

    Article  Google Scholar 

  18. Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K. & Nghiem, S. V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sensing 41, 215–229 (2003).

    Article  Google Scholar 

  19. Figa-Saldaña, J. et al. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: a follow on for European wind scatterometers. Can. J. Remote Sensing 28, 404–412 (2002).

    Article  Google Scholar 

  20. Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    Article  Google Scholar 

  21. Albergel, C. et al. Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sens. Environ. 138, 77–89 (2013).

    Article  Google Scholar 

  22. McColl, K. A., Entekhabi, D. & Piles, M. Uncertainty analysis of soil moisture and vegetation indices using Aquarius scatterometer observations. IEEE Trans. Geosci. Remote Sensing 52, 4259–4272 (2014).

    Article  Google Scholar 

  23. Koster, R. D., Brocca, L., Crow, W. T., Burgin, M. S. & De Lannoy, G. J. M. Precipitation estimation using L-band and C-band soil moisture retrievals: precipitation estimation from soil moisture retrievals. Wat. Resour. Res. 52, 7213–7225 (2016).

    Article  Google Scholar 

  24. Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12, 863–885 (2008).

    Article  Google Scholar 

  25. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2015).

    Article  Google Scholar 

  26. Koster, R. D. & Suarez, M. J. Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeorol. 4, 408–423 (2003).

    Article  Google Scholar 

  27. Gentine, P., Holtslag, A. A. M., D’Andrea, F. & Ek, M. Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeorol. 14, 1443–1462 (2013).

    Article  Google Scholar 

  28. Koster, R. D. et al. The second phase of the global land–atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J. Hydrometeorol. 12, 805–822 (2011).

    Article  Google Scholar 

  29. Tuttle, S. & Salvucci, G. Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science 352, 825–828 (2016).

    Article  Google Scholar 

  30. Cuenca, R. H., Hagimoto, Y. & Moghaddam, M. Three-and-a-half decades of progress in monitoring soils and soil hydraulic properties. Proc. Environ. Sci. 19, 384–393 (2013).

    Article  Google Scholar 

  31. Monerris, A. et al. IEEE MicroRad 2006 171–175 (IEEE, 2006).

    Book  Google Scholar 

  32. O’ Neill, P. E., Chan, S., Njoku, E. G., Jackson, T. & Bindlish, R. SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016).

    Google Scholar 

  33. Chan, S. K. et al. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sensing 54, 4994–5007 (2016).

    Article  Google Scholar 

  34. Huffman, G. GPM Level 3 IMERG Half Hourly 0.1 × 0.1 Degree Precipitation, version 03 (Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), 2015).

    Google Scholar 

  35. Das, N. SMAP Ancillary Data Report: Soil Attributes (Jet Propulsion Laboratory, California Institute of Technology, accessed September 2016, 2013); http://smap.jpl.nasa.gov/files/smap2/044_soil_attrib.pdf

  36. Delworth, T. L. & Manabe, S. The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Clim. 1, 523–547 (1988).

    Article  Google Scholar 

  37. Delworth, T. & Manabe, S. The influence of soil wetness on near-surface atmospheric variability. J. Clim. 2, 1447–1462 (1989).

    Article  Google Scholar 

  38. Wang, A., Zeng, X., Shen, S. S. P., Zeng, Q.-C. & Dickinson, R. E. Time Scales of Land Surface Hydrology. J. Hydrometeorol. 7, 868–879 (2006).

    Article  Google Scholar 

  39. Ghannam, K. et al. Persistence and memory timescales in root-zone soil moisture dynamics. Wat. Resour. Res. 52, 1427–1445 (2016).

    Article  Google Scholar 

  40. Nakai, T. et al. Radiative and precipitation controls on root zone soil moisture spectra. Geophys. Res. Lett. 41, 7546–7554 (2014).

    Article  Google Scholar 

  41. Vinnikov, K. Y. & Yeserkepova, I. B. Soil moisture: empirical data and model results. J. Clim. 4, 66–79 (1991).

    Article  Google Scholar 

  42. Vinnikov, K. Y., Robock, A., Speranskaya, N. A. & Schlosser, C. A. Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res. 101, 7163–7174 (1996).

    Article  Google Scholar 

  43. Wu, W., Geller, M. A. & Dickinson, R. E. The response of soil moisture to long-term variability of precipitation. J. Hydrometeorol. 3, 604–613 (2002).

    Article  Google Scholar 

  44. McColl, K. A. et al. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 41, 2014GL061322 (2014).

    Article  Google Scholar 

  45. Crow, W. T. et al. Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation. Geophys. Res. Lett. 42, 2015GL065929 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

K.A.M. is funded by a National Science Foundation Graduate Research Fellowship and a Ziff Environmental Fellowship from Harvard University’s Center for the Environment. The parts of this work performed by the Massachusetts Institute of Technology and by the Jet Propulsion Laboratory, California Institute of Technology were conducted under contracts with the National Aeronautics and Space Administration. The authors thank S. Seneviratne for comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.A.M. wrote the manuscript. R.A., K.A.M. and S.H.A. conducted analyses and produced figures. D.E. conceived and led the project, and developed the ‘stored precipitation fraction’ in discussions with K.A.M., S.H.A. and A.G.K. S.Y. contributed to interpretation of the results. All authors discussed and edited drafts of the manuscript.

Corresponding author

Correspondence to Dara Entekhabi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McColl, K., Alemohammad, S., Akbar, R. et al. The global distribution and dynamics of surface soil moisture. Nature Geosci 10, 100–104 (2017). https://doi.org/10.1038/ngeo2868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing